The Volume Operator in Loop Quantum Gravity

Johannes Brunnemann

jbrunnem@math.upb.de

The Third Quantum Gravity and Quantum Geometry School, Zakopane, March 3, 2011
Overview

0 Motivation

1 Construction / Regularization / Implementation on \mathcal{H}_{kin}

2 Evaluation of Matrix Elements (Rep’n. Theory / Combinatorics)

3 Spectral Properties.

4 To Do.
Gauge Invariant 4-Vertex

- Gauge Invariance

\[J_1 + J_2 + J_3 + J_4 \overset{!}{=} 0 \]

- Matrix Element

\[\langle j_{12} | \hat{q}_{123} | j_{12} - 1 \rangle = \]
\[= \frac{1}{\sqrt{(2j_{12} - 1)(2j_{12} + 1)}} \left[(j_1 + j_2 + j_{12} + 1)(-j_1 + j_2 + j_{12})(j_1 - j_2 + j_{12})(j_1 + j_2 - j_{12} + 1) \right]^{\frac{1}{2}} \]
\[\times (j_3 + j_4 + j_{12} + 1)(-j_3 + j_4 + j_{12})(j_3 - j_4 + j_{12})(j_3 + j_4 - j_{12} + 1) \]
\[= - \langle j_{12} - 1 | \hat{q}_{123} | j_{12} \rangle \]
\[
< \bar{a} | \hat{a}_{IJK} | \bar{a}' > = \\
= \frac{1}{4} (-1)^{jK+jI+aI-1+aK} (-1)^{a_I-a'_I} (-1)^{\sum_{n=I+1}^{J-1} jn} (-1)^{-\sum_{p=J+1}^{K-1} jp} \times \\
\times X(j_I, j_J) \frac{1}{2} X(j_J, j_K) \frac{1}{2} \sqrt{(2a_I + 1)(2a'_I + 1)} \sqrt{(2a_J + 1)(2a'_J + 1)} \times \\
\times \left\{ \begin{array}{ccc}
\frac{a_I-1}{1} & j_I & a_I \\
 a'_I & j_I & I
\end{array} \right\} \left[\prod_{n=I+1}^{J-1} \sqrt{(2a'_n + 1)(2a_n + 1)} (-1)^{a'_n-1+a_n-1+1} \left\{ \begin{array}{ccc}
j_n & a'_n-1 & a_n \\
 a_n & a_n & a_n-1
\end{array} \right\} \right] \times \\
\times \left[\prod_{n=J+1}^{K-1} \sqrt{(2a'_n + 1)(2a_n + 1)} (-1)^{a'_n-1+a_n-1+1} \left\{ \begin{array}{ccc}
j_n & a'_n-1 & a_n \\
 a_n & a_n & a_n-1
\end{array} \right\} \right] \left\{ \begin{array}{ccc}
a_K & j_K & a_{K-1} \\
 a_{K-1} & a_{K-1} & a_{K-1}
\end{array} \right\} \times \\
\times \left[(-1)^{a'_J+a'_J-1} \left\{ \begin{array}{ccc}
a_J & j_J & a'_J-1 \\
 a_J & a_{J-1} & \frac{1}{j_J}
\end{array} \right\} \left\{ \begin{array}{ccc}
a'_J-1 & j_J & a'_J \\
 a_J & a_J & \frac{1}{j_J}
\end{array} \right\} \\
- (-1)^{a_J+a_{J-1}} \left\{ \begin{array}{ccc}
a'_J & j_J & a'_J-1 \\
 a_J & a_{J-1} & \frac{1}{j_J}
\end{array} \right\} \left\{ \begin{array}{ccc}
a_{J-1} & j_J & a'_J \\
 a_J & a_J & \frac{1}{j_J}
\end{array} \right\} \right] \times \\
\times \prod_{n=2}^{I-1} a_n \delta_{a_n a'_n} \prod_{n=K}^{N} a_n \delta_{a_n a'_n}
\]
4-Vertex
Analytical Insights

- Special Form: only 1 antisymmetric, D-dim tridiagonal matrix, sign factor $\sigma(123)$ only gives overall scaling of the spectrum.

$$\hat{q}_{123} = \begin{pmatrix}
0 & -q_1 & 0 & \cdots & 0 & 0 & 0 \\
q_1 & 0 & -q_2 & \cdots & 0 & 0 & 0 \\
0 & q_2 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -q_{D-2} & 0 \\
0 & 0 & 0 & \cdots & q_{D-2} & 0 & -q_{D-1} \\
0 & 0 & 0 & \cdots & 0 & q_{D-1} & 0 \\
\end{pmatrix}$$

where $q_k = q_k(j_1, j_2, j_3, j_4)$
Numerical Results.

Histograms for the generic (gauge invariant) 4-vertex

... up to $j_{\text{max}} \leq 126/2$. (By ‘generic’ we mean excluding co-planar edges.)
Oriented Matroids
Motivation from Vectors I

\mathbb{R}^3, M vector config with sorted ground set $E = (e_1, \ldots, e_5)$.
Oriented Matroids
Motivation from Vectors I

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = (e_1, \ldots, e_5)$. Characterized by linear dependence modulo
Oriented Matroids
Motivation from Vectors I

\[\mathbb{R}^3, M \text{ vector config with sorted ground set } E = (e_1, \ldots, e_5). \]
Characterized by linear dependence modulo

(i) reorientation \(e_k \rightarrow -e_k \)
Oriented Matroids
Motivation from Vectors I

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = (e_1, \ldots, e_5)$. Characterized by linear dependence modulo

(i) reorientation $e_k \rightarrow -e_k$

(ii) re-labelling
Oriented Matroids
Motivation from Vectors I

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = (e_1, \ldots, e_5)$.

Oriented Bases $\mathcal{B}(\mathcal{M})$
Oriented Matroids
Motivation from Vectors I

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = (e_1, \ldots, e_5)$.

Oriented Bases $\mathcal{B}(\mathcal{M})$

- Family $\mathcal{B}(\mathcal{M})$ of sorted bases
 - $\mathcal{B} = \{ B = (b_1, b_2, b_3) \subseteq E : B \text{ spans } \mathbb{R}^3 \}$
Oriented Matroids
Motivation from Vectors I

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = (e_1, \ldots, e_5)$.

Oriented Bases $\mathcal{B}(\mathcal{M})$

- Family $\mathcal{B}(\mathcal{M})$ of sorted bases
 - $\mathcal{B} = \{ B = (b_1, b_2, b_3) \subseteq E : B \text{ spans } \mathbb{R}^3 \}$
- Basis orientation $\chi_{\mathcal{B}}$ (chirotope), $S \subseteq E$
 - $\chi_{\mathcal{B}}(S) = \begin{cases}
 \pm 1 & S \in \mathcal{B} \\
 0 & S \notin \mathcal{B}
 \end{cases}$

... in our example $\chi_{\mathcal{B}}(B) = \pm \text{sgn}(|\det B|)$ (if $\chi_{\mathcal{B}}$ chirotope, then also $-\chi_{\mathcal{B}}$, depending of our notion of 'positive' orientation)
Oriented Matroids
Motivation from Vectors I

\[\mathbb{R}^3, \mathcal{M} \text{ vector config with sorted ground set } E = (e_1, \ldots, e_5). \]

Oriented Bases \(\mathcal{B}(\mathcal{M}) \)

- Family \(\mathcal{B}(\mathcal{M}) \) of sorted bases

 - \(\mathcal{B} = \{ B = (b_1, b_2, b_3) \subseteq E : B \text{ spans } \mathbb{R}^3 \} \)

- Basis orientation \(\chi_{\mathcal{B}} \) (chirotope), \(S \subseteq E \)

 - \(\chi_{\mathcal{B}}(S) = \begin{cases}
 \pm 1 & S \in \mathcal{B} \\
 0 & S \notin \mathcal{B}
 \end{cases} \)

... in our example \(\chi_{\mathcal{B}}(B) = \pm \text{sgn}(\det B) \) (if \(\chi_{\mathcal{B}} \) chirotope, then also \(-\chi_{\mathcal{B}} \), depending of our notion of 'positive' orientation)

<table>
<thead>
<tr>
<th>(B)</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>134</th>
<th>135</th>
<th>145</th>
<th>234</th>
<th>235</th>
<th>245</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_{\mathcal{B}}(B))</td>
<td></td>
</tr>
</tbody>
</table>
\[\mathbb{R}^3, M \text{ vector config with sorted ground set } E = (e_1, \ldots, e_5). \]

Oriented Bases \(B(M) \)

- **Family** \(B(M) \) of sorted bases

 \[B = \{ B = (b_1, b_2, b_3) \subseteq E : B \text{ spans } \mathbb{R}^3 \} \]

- **Basis orientation** \(\chi_B \) (chirotope), \(S \subseteq E \)

\[\chi_B(S) = \begin{cases}
\pm 1 & S \in B \\
0 & S \notin B
\end{cases} \]

\[\chi_B(B) = \pm \text{sgn}(\det B) \text{ (if } \chi_B \text{ chirotope, then also } -\chi_B, \text{ depending of our notion of 'positive' orientation)} \]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
B & 123 & 124 & 125 & 134 & 135 & 145 & 234 & 235 & 245 & 345 \\
\hline
\chi_B(B) & + & & & & & & & & & \\
\end{array}
\]
Oriented Matroids
Motivation from Vectors I

\(\mathbb{R}^3, \mathcal{M} \) vector config with sorted ground set \(E = (e_1, \ldots, e_5) \).

Oriented Bases \(\mathcal{B}(\mathcal{M}) \)

- Family \(\mathcal{B}(\mathcal{M}) \) of sorted bases
 \[\mathcal{B} = \{ B = (b_1, b_2, b_3) \subseteq E : B \text{ spans } \mathbb{R}^3 \} \]
- Basis orientation \(\chi_B \) (chirotope), \(S \subseteq E \)
 \[\chi_B(S) = \begin{cases}
 \pm 1 & S \in \mathcal{B} \\
 0 & S \notin \mathcal{B}
 \end{cases} \]

... in our example \(\chi_B(B) = \pm \text{sgn}(\det B) \) (if \(\chi_B \) chirotope, then also \(-\chi_B \), depending of our notion of 'positive' orientation)

<table>
<thead>
<tr>
<th>(B)</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>134</th>
<th>135</th>
<th>145</th>
<th>234</th>
<th>235</th>
<th>245</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_B(B))</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J. Brunnemann (HH / PB)
\(\hat{V} \) in LQG
3rd QG, Mar 3, 2011 7 / 20
\(\mathbb{R}^3, \mathcal{M} \) vector config with sorted ground set \(E = (e_1, \ldots, e_5) \).

Oriented Bases \(\mathcal{B}(\mathcal{M}) \)

- Family \(\mathcal{B}(\mathcal{M}) \) of sorted bases
 - \(\mathcal{B} = \{ B = (b_1, b_2, b_3) \subseteq E : B \text{ spans } \mathbb{R}^3 \} \)
- Basis orientation \(\chi_B \) (chirotope), \(S \subseteq E \)
 - \(\chi_B(S) = \begin{cases}
 \pm 1 & S \in \mathcal{B} \\
 0 & S \notin \mathcal{B}
 \end{cases} \)

... in our example \(\chi_B(B) = \pm \text{sgn}(\det B) \) (if \(\chi_B \) chirotope, then also \(-\chi_B \), depending of our notion of 'positive' orientation)

\[
\begin{array}{c|cccc|cccc|c}
B & 123 & 124 & 125 & 134 & 135 & 145 & 234 & 235 & 245 & 345 \\
\hline
\chi_B(B) & + & + & 0 & - & - & - & + & + & + & 0 \\
\end{array}
\]
Oriented Matroids
Motivation from Vectors I

Re-labelling and reorientation act non-trivially on $\chi_B(B)$. One finds in total 4 (1 uniform) equivalence classes of chirotopes for $D = 3, N = 5$:
Oriented Matroids

Motivation from Vectors I

Re-labelling and reorientation act non-trivially on $\chi_B(B)$. One finds in total 4 (1 uniform) equivalence classes of chirotopes for $D = 3$, $N = 5$:

<table>
<thead>
<tr>
<th>B</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>134</th>
<th>135</th>
<th>145</th>
<th>234</th>
<th>235</th>
<th>245</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{B,1}(B)$</td>
<td>+</td>
</tr>
<tr>
<td>$\chi_{B,2}(B)$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_{B,3}(B)$</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_{B,4}(B)$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Oriented Matroids
Motivation from Vectors I

Re-labelling and reorientation act non-trivially on $\chi_B(B)$. One finds in total 4 (1 uniform) equivalence classes of chirotopes for $D = 3, N = 5$:

<table>
<thead>
<tr>
<th>B</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>134</th>
<th>135</th>
<th>145</th>
<th>234</th>
<th>235</th>
<th>245</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{B,1}(B)$</td>
<td>+</td>
</tr>
<tr>
<td>$\chi_{B,2}(B)$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_{B,3}(B)$</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_{B,4}(B)$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Our example

<table>
<thead>
<tr>
<th>B</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>134</th>
<th>135</th>
<th>145</th>
<th>234</th>
<th>235</th>
<th>245</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_B(B)$</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

is contained in equiv. class 3 (set $e_K \rightarrow -e_K$ for $K = 1, 3, 4, 5$ and use properties of det)
\(\mathbb{R}^3 \), \(\mathcal{M} \) vector config with sorted ground set \(E = \{ e_1, \ldots, e_5 \} \).
Oriented Matroids
Motivation from Vectors II

\[\mathbb{R}^3, \mathcal{M} \text{ vector config with sorted ground set } E = \{e_1, \ldots, e_5\}. \]

Signed Circuits \(\mathcal{C} \)
Oriented Matroids
Motivation from Vectors II

\[\mathbb{R}^3, \mathcal{M} \text{ vector config with sorted ground set } E = \{e_1, \ldots, e_5\}. \]

Signed Circuits \(\mathcal{C} \)

- **Circuits**
 - \(\mathcal{C} = \{ C \subseteq E : C \text{ min. lin. dep.} \} \)
 - Min. lin. dep. \(0 = \sum_{k=1}^{N(c)} \lambda_K e_K \)
 - \((e_K \in C, \lambda_K \in \mathbb{R}) \)
Oriented Matroids
Motivation from Vectors II

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = \{e_1, \ldots, e_5\}$.

Signed Circuits \mathcal{C}

- Circuits
 - $\mathcal{C} = \{C \subseteq E : C$ min. lin. dep. $\}$
 - Min. lin. dep. $0 = \sum_{k=1}^{N(c)} \lambda_K e_K$
 - $(e_K \in C, \lambda_K \in \mathbb{R})$

- Signed Subsets, $S \subseteq E$
 - $C = \{C^+, C^-\}$ where $C^\pm = \{e_K : \lambda_K \geq 0\}$
 - $(C')^\pm = C^\mp$. Both, $C, -C$ contained in \mathcal{C}
\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = \{e_1, \ldots, e_5\}$.

Signed Circuits \mathcal{C}

- **Circuits**

 $\mathcal{C} = \{C \subseteq E : C \text{ min. lin. dep. }\}$

 Min. lin. dep. $0 = \sum_{k=1}^{N(c)} \lambda_K e_K$

 ($e_K \in C, \lambda_K \in \mathbb{R}$)

- **Signed Subsets, $S \subseteq E$**

 $\mathcal{C} = \{C^+, C^-\}$ where $C^\pm = \{e_K : \lambda_K \geq 0\}$

 $(-C)^\pm = C^\mp$. Both, $C, -C$ contained in \mathcal{C}

... in our example $\mathcal{C} = \{\pm C_1, \pm C_2, \pm C_3\}$ is given by
Oriented Matroids
Motivation from Vectors II

\(\mathbb{R}^3 \), \(\mathcal{M} \) vector config with sorted ground set \(E = \{ e_1, \ldots, e_5 \} \).

Signed Circuits \(\mathcal{C} \)

- **Circuits**
 - \(\mathcal{C} = \{ \mathcal{C} \subseteq E : \mathcal{C} \text{ min. lin. dep. } \} \)
 - Min. lin. dep. \(0 = \sum_{k=1}^{N(c)} \lambda_K e_K \)
 \((e_K \in \mathcal{C}, \lambda_K \in \mathbb{R}) \)

- **Signed Subsets, \(S \subseteq E \)**
 - \(\mathcal{C} = \{ \mathcal{C}^+, \mathcal{C}^- \} \) where \(\mathcal{C}^{\pm} = \{ e_K : \lambda_K \geq 0 \} \)
 - \((-C)^{\pm} = C^{\mp} \). Both, \(C, -C \) contained in \(\mathcal{C} \)

... in our example \(\mathcal{C} = \{ \pm C_1, \pm C_2, \pm C_3 \} \) is given by

<table>
<thead>
<tr>
<th>(C^+)</th>
<th>(C^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ e_1, e_2, e_3 })</td>
<td>({ e_4 })</td>
</tr>
</tbody>
</table>

\(J. \text{ Brunnemann (HH / PB)} \)
Oriented Matroids
Motivation from Vectors II

\[\mathbb{R}^3, \mathcal{M} \text{ vector config with sorted ground set } E = \{e_1, \ldots, e_5\}. \]

Signed Circuits \(\mathcal{C} \)

- **Circuits**
 \[\mathcal{C} = \{ C \subseteq E : C \text{ min. lin. dep. } \} \]
 \[\text{Min. lin. dep. } 0 = \sum_{k=1}^{N(c)} \lambda_K e_K \]
 \((e_K \in C, \lambda_K \in \mathbb{R}) \)

- **Signed Subsets, \(S \subseteq E \)**
 \[C = \{ C^+, C^- \} \text{ where } C^\pm = \{ e_K : \lambda_K \geq 0 \} \]
 \[(-C)^\pm = C^\mp. \text{ Both, } C, -C \text{ contained in } \mathcal{C} \]

... in our example \(\mathcal{C} = \{ \pm C_1, \pm C_2, \pm C_3 \} \) is given by

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C^+)</td>
<td>({ e_1, e_2, e_3 })</td>
<td>({ e_1, e_2 })</td>
<td>({ e_3, e_5 })</td>
</tr>
<tr>
<td>(C^-)</td>
<td>(e_4)</td>
<td>({ e_5 })</td>
<td>({ e_4 })</td>
</tr>
</tbody>
</table>

\[J. \text{ Brunnemann (HH / PB)} \]
\[\hat{\nu} \text{ in LQG} \]
Oriented Matroids
Motivation from Vectors II

\mathbb{R}^3, \mathcal{M} vector config with sorted ground set $E = \{e_1, \ldots, e_5\}$.

Signed Circuits \mathcal{C}

- Circuits
 \[\mathcal{C} = \{ C \subseteq E : C \text{ min. lin. dep. } \} \]

 Min. lin. dep. $0 = \sum_{k=1}^{N(c)} \lambda_k e_K$

 ($e_K \in C$, $\lambda_k \in \mathbb{R}$)

- Signed Subsets, $S \subseteq E$
 \[\mathcal{C} = \{ C^+, C^- \} \text{ where } C^\pm = \{ e_K : \lambda_K \geq 0 \} \]
 \[(-C)^\pm = C^\mp. \text{ Both, } C, -C \text{ contained in } \mathcal{C} \]
 \[\text{Relative Sign} \]
 \[sgn_C(e_K) = \begin{cases}
 \pm 1 & e_K \in C^\pm \\
 0 & e_K \notin C
 \end{cases} \]
Oriented Matroids
Motivation from Vectors II

\[\mathbb{R}^3, \mathcal{M} \text{ vector config with sorted ground set } E = \{e_1, \ldots, e_5\}. \]

Signed Circuits \(C \)

- Circuits
 - \(C = \{C \subseteq E : C \text{ min. lin. dep. } \} \)
 - Min. lin. dep. \(0 = \sum_{k=1}^{N(c)} \lambda_K e_K \)
 \((e_K \in C, \ \lambda_K \in \mathbb{R}) \)

- Signed Subsets, \(S \subseteq E \)
 - \(C = \{C^+, C^-\} \) where \(C^\pm = \{e_K : \lambda_K \geq 0\} \)
 - \((-C)^\pm = C^\mp \). Both, \(C, -C \) contained in \(C \)
 - Relative Sign
 \[\text{sgn}_C(e_K) = \begin{cases}
 \pm 1 & e_K \in C^\pm \\
 0 & e_K \notin C
 \end{cases} \]
 - \(\text{supp } C := C^+ \cup C^- \)
Oriented Matroids
Motivation from Vectors III

Description of vector config \mathcal{M} over ground set E in terms of $\mathcal{B}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ equivalent.

- for every $B \in \mathcal{B}$ and for every $e \in E \setminus B$ there is a unique $\pm C \in \mathcal{C}$ such that
 \[B \cup \{e\} \subseteq C. \]

- Given two bases $B_1, B_2 \in \mathcal{B}$, $B_1 = (e, b_2, b_3)$, $B_2 = (f, b_2, b_3)$ we have $B_1 \cup \{f\} = B_2 \cup \{e\} \subseteq C$ for one $\pm C \in \mathcal{C}$. It holds that
 \[\text{sgn}_C(e) \cdot \text{sgn}_C(f) = \chi_B(B_1) \cdot \chi_B(B_2). \]
Oriented Matroids
Motivation from Vectors III

Description of vector config \mathcal{M} over ground set E in terms of $\mathcal{B}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ equivalent.

- for every $B \in \mathcal{B}$ and for every $e \in E \setminus B$ there is a unique $\pm C \in \mathcal{C}$ such that
 \[B \cup \{e\} \subseteq C. \]

- Given two bases $B_1, B_2 \in \mathcal{B}$, $B_1 = (e, b_2, b_3)$, $B_2 = (f, b_2, b_3)$ we have $B_1 \cup \{f\} = B_2 \cup \{e\} \subseteq C$ for one $\pm C \in \mathcal{C}$. It holds that
 \[\text{sgn}_C(e) \cdot \text{sgn}_C(f) = \chi_B(B_1) \cdot \chi_B(B_2) \]
Oriented Matroids
Motivation from Vectors III

Description of vector config \mathcal{M} over ground set E in terms of $\mathcal{B}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ equivalent.

- for every $B \in \mathcal{B}$ and for every $e \in E \setminus B$ there is a unique $\pm C \in \mathcal{C}$ such that

$$B \cup \{e\} \subseteq C.$$

- Given two bases $B_1, B_2 \in \mathcal{B}$, $B_1 = (e, b_2, b_3)$, $B_2 = (f, b_2, b_3)$ we have $B_1 \cup \{f\} = B_2 \cup \{e\} \subseteq C$ for one $\pm C \in \mathcal{C}$. It holds that

$$\text{sgn}_C(e) \cdot \text{sgn}_C(f) = \chi_{\mathcal{B}}(B_1) \cdot \chi_{\mathcal{B}}(B_2)$$
Oriented Matroids
Motivation from Vectors III

Description of vector config \mathcal{M} over ground set E in terms of $\mathcal{B}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ equivalent.

- for every $B \in \mathcal{B}$ and for every $e \in E \setminus B$ there is a unique $\pm C \in \mathcal{C}$ such that
 \[B \cup \{e\} \subseteq C. \]

- Given two bases $B_1, B_2 \in \mathcal{B}$, $B_1 = (e, b_2, b_3)$, $B_2 = (f, b_2, b_3)$ we have $B_1 \cup \{f\} = B_2 \cup \{e\} \subseteq C$ for one $\pm C \in \mathcal{C}$. It holds that
 \[\text{sgn}_C(e) \cdot \text{sgn}_C(f) = \chi_B(B_1) \cdot \chi_B(B_2) \]

Can convert between the two equivalent descriptions!
Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:
Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:
Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

\[M_{\text{vector}} \]

\[M_{\text{graph}} \]

Signed Circuits \(C \) \(\equiv \) Loops
Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

Signed Bases \mathcal{C} \equiv Spanning Trees
Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

\[\mathcal{M}_{\text{vector}} \]

\[\mathcal{M}_{\text{graph}} \]

Signed Bases \(\mathcal{C} \) \(\equiv \) Spanning Trees
Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

$\mathcal{M}_{\text{vector}}$ $\mathcal{M}_{\text{graph}}$

e_1 v_1 e_4 v_4
e_2 v_2 e_5
e_3 v_3

Only two realizations of the more general combinatorial concept of an oriented matroid \mathcal{M} of rank 3 over the ground set E in terms of its signed bases $\mathcal{M} = (E, B)$, respectively signed circuits $\mathcal{M} = (E, C)$.

J. Brunnemann (HH / PB)
Oriented Matroids

Axiomatic Definition: Signed Circuits

A family \(C \) of signed subsets of a finite set \(E \) is called the set of signed circuits of an oriented matroid \(\mathcal{M} = (E, C) \) on \(E \) if

(C0) Non-emptiness: \(\emptyset \notin C \)

(C1) Symmetry: \(C = -C \), that is for every \(C \in C \) also its opposite \(-C \in C\).

(C2) Incomparability: if \(C_1 \subseteq C_2 \) then either \(C_1 = C_2 \) or \(C_1 = -C_2 \)
\[\forall C_1, C_2 \in C. \]

(C3) Elimination: For all \(C_1, C_2 \in C \) with \(C_1 \neq -C_2 \), if \(e \in C_1^+ \cap C_2^- \), \(\exists C_3 \in C \) such that \(C_3^\pm \subseteq (C_1^\pm \cup C_2^\pm) \setminus \{e\} \).

Equivalent formulation also in terms of \(B(\mathcal{M}) \). Can be extended to infinite ground sets [Bruhn et al.].
More Difficult: Higher Valence

Sign factor combinatorics for 4–7-valent non-coplanar vertices

<table>
<thead>
<tr>
<th>N_v</th>
<th># triples</th>
<th>$# \vec{\epsilon}(N_v)$ sprinkled</th>
<th>$# \vec{\epsilon}$ perm. equiv. classes</th>
<th>$# \vec{\sigma}$ configs</th>
<th>$#$ realizable reor. equiv. classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>384</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>23,808</td>
<td>41</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>3,486,720</td>
<td>706</td>
<td>673</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>≥ 747,735,880</td>
<td>28,287</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>9</td>
<td>84</td>
<td>≥</td>
<td>?</td>
<td>?</td>
<td>4,381</td>
</tr>
</tbody>
</table>
Numerical Results.

Histograms for each sigma configuration $\vec{\sigma}$ at the (gauge invariant) 5-vertex

... up to $j_{\text{max}} = 25/2$. The blue is for $\vec{\sigma} = (\sigma_{123}, \sigma_{124}, \sigma_{134}, \sigma_{234}) = (2, 0, 0, 0)$, the green for $\vec{\sigma} = (2, 2, 2, 0)$, and the purple for $\vec{\sigma} = (2, 2, 4, 0)$. Each histogram has 512 bins.
Numerical Results

Histograms for the overall generic (gauge invariant) 5-vertex ... up to $j_{\text{max}} \leq 25/2$. (By ‘generic’ we mean excluding co-planar edges.) Each histogram has 512 bins.

![Histograms for the overall generic (gauge invariant) 5-vertex](image-url)
Numerical Results

Smallest non-zero eigenvalues λ_{min} at the (gauge invariant) 5-vertex

\[\lambda_{\text{min}} \]

Diagram showing λ_{min} as a function of $2j_{\text{max}}$ and $\vec{\sigma}$-index.
Numerical Results

Largest eigenvalues λ_{max} of the (gauge invariant) 5-vertex
T. Thiemann.
Modern Canonical Quantum General Relativity.

A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler.
Oriented Matroids.

C. Rovelli and L. Smolin, “Discreteness of area and volume in quantum gravity”,
[arXiv:gr-qc/9411005].

R. De Pietri, “Spin Networks and Recoupling in Loop Quantum Gravity”, Nucl.

T. Thiemann, “Closed formula for the matrix elements of the volume operator in
canonical quantum gravity”,

A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. II: Volume

L. Finschi and K. Fukuda. Generation of Oriented Matroids – A Graph Theoretical Approach.